



### **Table of Contents**

| <u>Introduction</u>                                       | Page 3   |
|-----------------------------------------------------------|----------|
| Recommended Use                                           |          |
| Assumptions                                               |          |
|                                                           |          |
| Low Cycle Fatigue (LCF) & Advanced LCF Tests              | Page 4   |
| Applicable Standards                                      |          |
| Room Temperature Accessories                              |          |
| Advanced/High Temperature Accessories                     |          |
|                                                           | Б. С     |
| Thermomechanical Fatigue (TMF) Test                       | Page 6   |
| Applicable Standards                                      |          |
| Accessories                                               |          |
| High Cycle Fatigue (HCF) Test                             | Page 7   |
| Applicable Standards                                      | ruge /   |
| Accessories                                               |          |
| Accessories                                               |          |
| Fracture Toughness                                        | Page 8   |
| Applicable Standards                                      | J        |
| Room Temperature Accessories                              |          |
| High Temperature Comments                                 |          |
|                                                           |          |
| Fatigue Crack Growth Test                                 | Page 10  |
| Applicable Standards                                      |          |
| Room Temperature Accessories                              |          |
| High Temperature Comments                                 |          |
| Direct Current Potential Drop (DCPD) Comments             |          |
|                                                           |          |
| <u>Tensile Test</u>                                       | Page 12  |
| Applicable Standards                                      |          |
| Room Temperature Accessories                              |          |
| High Temperature Accessories                              |          |
|                                                           |          |
|                                                           |          |
| Compression Test                                          | Page 15  |
| Applicable Standards                                      |          |
| Room Temperature Accessories                              |          |
| High Temperature Accessories                              |          |
|                                                           |          |
| Bend Test                                                 | Page 16  |
| Applicable Standards                                      | . 450 10 |
|                                                           |          |
| Room Temperature Accessories High Temperature Accessories |          |
| riigii Teriiperature Accessories                          |          |
|                                                           |          |

#### Introduction

The information collected in this document is intended to serve as a preliminary guideline for determining solutions for material testing applications. Its focus is on common test methods for metal specimens.

This document should be used in the *Discovery and Influence* (D&I) and *Create Solution* stages of the selling process. Iterative interaction with the customer is required to specify the final product offering.

#### **Recommended Use:**

- 1. Discover the customer's requirements
- 2. Use this reference to help identify possible solutions, as well as potential tradeoffs of the choices
- 3. Refer to the product data sheets and Services & Accessories catalog for detailed product information (specifications, etc.)
- 4. Review the selections to verify that they make sense for your customer
- 5. Refine selection as more is learned about the customer's requirements
- 6. Verify the configuration with Application Engineers (AE) and/or Systems Engineers

#### **Assumptions:**

The following assumptions were made in developing these guidelines to ensure the highest probability for success:

- The following components will be used with MTS equipment:
  - o Model 318 or 370 load frames
  - o 493 or 494 Controllers
  - o Model 793 Software
  - o TestWorks or MTS TestSuite software
- All equipment is in good working order:
  - o Load frame is in alignment
  - o Transducers have valid calibrations
- The customer's facility structure supports the desired test
  - Floor stability
  - Electrical requirements
  - o Hydraulic power requirements
  - o Isolation
- Other factors:
  - Load frame attachment kit information available
  - Software version and build number available

Note: Some products referenced in this document may not be featured in the current MTS Services & Accessories catalog or product data sheets

### Low Cycle Fatigue (LCF) & Advanced LCF Tests

#### **Applicable Standards**

| ASTM E606-04e1       | Standard Practice for Strain-Controlled Fatigue Testing                                         |
|----------------------|-------------------------------------------------------------------------------------------------|
| ISO / DIS 12111      | Metallic materials - Fatigue testing - Strain-controlled thermomechanical fatigue testing       |
|                      | method                                                                                          |
| ASTM E739-91(2004)e1 | Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N_ and Strain |
|                      | Life (e-N) Fatigue Data                                                                         |
| ISO 12106:2003       | Metallic materials - Fatigue testing - Axial-strain-controlled method                           |
| BS 7270:2006         | Metallic materials. Constant amplitude strain controlled axial fatigue. Method of test          |
| DIN EN 3874          | Aerospace series - Test methods for metallic materials - Constant amplitude force-controlled    |
|                      | low cycle fatigue testing                                                                       |
| DIN EN 3988          | Aerospace series - Test methods for metallic materials - Constant amplitude strain-controlled   |
|                      | low cycle fatigue testing                                                                       |
| JIS Z2279            | Method of high temperature low cycle fatigue testing for metallic materials                     |
| GE E50TF148          | Axial strain control low cycle fatigue testing of metal test bars                               |

#### **General Comments**

#### **Load Frame**

- Model 370.10 / 318.10 25 kN and 50 kN load frames are not suitable for LCF
  - o Rod / seal design not adequate needs to be very stiff
  - Use a small servovalve (252.21\* or 252.22\*) with 100 kN actuator for best performance
     \*4 lpm (1 gpm) or 9.5 lpm (2.5 gpm)

#### Software

• The MTS TestSuite Low Cycle Fatigue and Advanced Low Cycle Fatigue Modules support ASTM E606.

#### **Room Temperature**

| Specimen         | Extensometer<br>Clip Gage (COD) | Grips  | Wedges     | Alignment | Grip Supply       |
|------------------|---------------------------------|--------|------------|-----------|-------------------|
| Dound w/norallal | 622.12                          | 646.10 | Collets    |           | Load frame        |
| Round w/parallel | 632.13                          | 647.10 | Round      | 609       | integrated or 685 |
| gage section     | ion 634.11/.12/.31              | 647.10 | Vee        |           |                   |
|                  |                                 | 646.10 | Collets    |           |                   |
| Hourglass        | 632.18/.19/.20                  | 647.10 | Round      | 609       |                   |
|                  | 047.10                          | Vee    |            |           |                   |
| Other            |                                 |        | Contact AE |           |                   |

#### **Notes**

Specimen dictates extensometer choice. Factors include gauge length, travel, environmental concerns

- Model 646 is the premier LCF grip should be used if LCF testing is the customer's expertise or if it's a difficult specimen
- Model 647 is a good alternative for LCF testing, especially for customers where testing flexibility if desired (run multiple test types)
- If the 647 is chosen, better results can be achieved with round wedges; vee wedges offer more flexibility and less specimen
  preparation
- Alignment is strongly recommended for LCF applications

#### **Advanced / High Temperature**

| Specimen     | Extensometer | Grips  | Wedges     | Misc              | Furnace | Alignment | Grip Supply |
|--------------|--------------|--------|------------|-------------------|---------|-----------|-------------|
|              |              |        |            | Hand pump         |         |           |             |
| Dound        | 632.50       |        | Specimen   | Water             |         |           | -           |
| Round        | 632.51       | 680    | Adapter    | cooling kit       | 653     | 600       |             |
| w/parallel   | 632.53       | 646.10 | Collets    | Water             | 055     | 609       | Load frame  |
| gage section | 632.54       | 647.10 | Round, H2O | cooling kit       |         |           | integrated  |
|              |              | 647.10 | Vee, H2O   | Cooling Kit       |         |           | or 685      |
|              |              |        |            | Hand pump         |         |           |             |
|              |              |        | Specimen   | Water             |         |           | -           |
| l la mala a  | 632.60       | 680    | Adapter    | cooling kit       | 653     | 609       |             |
| Hourglass    | 632.60       | 646.10 | Collets    | Matar             |         |           | Load frame  |
|              |              | 647.10 | Round, H2O | Water cooling kit |         |           | integrated  |
|              | 0            | 647.10 | Vee, H20   | Cooling Kit       |         |           | or 685      |
| Other        |              | •      | •          | Contact AE        |         | •         |             |

#### **Notes**

- · Specimen dictates extensometer choice. Factors include gauge length, travel, environmental concerns
- Choice of 680 grip versus 646 or 647 can depend on specimen size
- 680 can extend into the furnace. Used in conjunction with 3-zone, better control of temperature gradients
- 646 and 647 heat the specimen only (grips can't go in furnace)
  - o Potential for greater temperature gradients
  - o May be OK if the specimen is very long
  - o Standard system oil can be used in the grip supply
  - Water cooling is required
- If there are multiple specimen types, may be beneficial to use 646/680 combination
  - o Additional flexibility with plate to adapt 646 to button-head specimens
- For 646 versus 647 grip considerations, see LCF testing at room temperature notes
- · Furnace selection should include consideration of acceptable specimen heating and thermal gradients at the system level
- Alignment is strongly recommended for LCF applications

#### Contact an MTS Application Engineer for assistance if you have an application that:

- Requires temperatures greater that 1000°C
- Requires forces greater than 10 kN at 1000°C
- Uses a non-metallic specimen (ceramic coating or solid ceramic)



### Thermomechanical Fatigue (TMF) Test

#### **Applicable Standards**

| ASTM E2368-04    | Standard Practice for Strain Controlled Thermomechanical Fatigue Testing |
|------------------|--------------------------------------------------------------------------|
| ISO TMF-STANDARD | Thermomechanical fatigue - the route to standardization                  |

#### **General Comments**

TMF is a complex application, requiring a custom solution; an AE must be involved for system configuration

#### **Load Frame**

- Model 370 / 318 25 kN and 50 kN load frames are not suitable for LCF
  - o Rod / seal design not adequate needs to be very stiff
  - o Recommend a 250 mm actuator stroke
  - Use a small servovalve (252.21\* or 252.22\*) with 100 kN actuator for best performance
     \*4 lpm (1 gpm) or 9.5 lpm (2.5 gpm)

#### Software

- The MTS TestSuite TMF Module will be available in 2010. Contact your MTS AE for further information.
- If using MTP, a TMF template is required.

| Specimen                                                         | Extensometer<br>Clip Gage (COD)                      | Grips            | Wedges  | Misc                 | Furnace                      | Alignment | Grip Supply                        |
|------------------------------------------------------------------|------------------------------------------------------|------------------|---------|----------------------|------------------------------|-----------|------------------------------------|
| Round w/parallel<br>gage section<br>(smooth or<br>threaded ends) | 632.50<br>632.51<br>632.53<br>632.54<br>632.68 (A/T) | 646.10<br>646.25 | Collets | Water<br>cooling kit | Induction<br>(Contact<br>AE) | 609       | Load frame<br>integrated<br>or 685 |

#### **Notes**

• There is a special version of the 646 grip that will allow air cooling through the center of the specimen (if using a hollow specimen). An axial-torsional option is also available



### **High Cycle Fatigue (HCF) Test**

#### **Applicable Standards**

| ASTM E467-08  | Standard Practice for Verifications of Constant Amplitude Dynamic Forces in an Axial Fatigue |
|---------------|----------------------------------------------------------------------------------------------|
|               | Testing System                                                                               |
| ASTM E466-07  | Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of  |
|               | Metallic Materials                                                                           |
| ISO 1099:2006 | Metallic materials - Fatigue testing - Axial force-controlled method                         |

#### **General Comments**

#### **Load Frame**

- Applications above 30 Hz may require a load frame column tie bar, pneumatic pads, performance analysis (SPOOL), acceleration compensation - contact an AE
- · Applications above 100 Hz may require specialty load frame and/or custom grips contact an AE

#### Software

• The MTS TestSuite High Cycle Fatigue Module supports ASTM E466.

| Specimen               | Extensometer<br>Clip Gage (COD) | Grips | Wedges  | Alignment | Grip Supply       |
|------------------------|---------------------------------|-------|---------|-----------|-------------------|
| Dound w/norallal       | Not typically                   | 647   | Vee     |           |                   |
| Round w/parallel sides | required.                       | 047   | Round   |           |                   |
| sides                  | For up to 150 Hz                | 646   | Collets |           |                   |
| Hourglass              | 632.27 can be                   | 647   | Vee     | 600       | Load frame        |
| (tangentially          | used.                           | 647   | Round   | 609       | integrated or 685 |
| blended fillets)       |                                 | 646   | Collets |           |                   |
| Flat parallel          |                                 | 647   | Flat    |           |                   |
| Flat hourglass         |                                 | 647   | Flat    |           |                   |

- Although the ASTM standard allows for flat specimens, round specimens are required for the best results
- HCF is often a load control test with no extensometer
- MTS 1000 Hz system is available



### **Fracture Toughness Tests**

#### **Applicable Standards**

| ASTM E1820-08a       | Standard Test Method for Measurement of Fracture Toughness                                 |
|----------------------|--------------------------------------------------------------------------------------------|
| ASTM E399-08         | Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness K Ic of Metallic   |
|                      | Materials                                                                                  |
| ASTM E1290-08        | Standard Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness          |
|                      | Measurement                                                                                |
| ASTM E561-05e1       | Standard Test Method for K-R Curve Determination                                           |
| ASTM B645-07         | Standard Practice for Linear-Elastic Plane-Strain Fracture Toughness Testing of Aluminum   |
|                      | Alloys                                                                                     |
| ISO 12737:2005       | Metallic materials - Determination of plane-strain fracture toughness                      |
| ISO 12135:2002       | Metallic materials - Unified method of test for the determination of quasi-static fracture |
|                      | toughness                                                                                  |
| BS EN ISO 12737:2005 | Metallic materials. Determination of plane-strain fracture toughness. (Identical to ISO    |
|                      | 12737:2005)                                                                                |
| BS 7448-1            | Fracture mechanics toughness tests. Method for determination of KIc, critical CTOD and     |
|                      | critical J value soft metallic materials (Partially replaced by BS EN ISO 12737:1999 -     |
|                      | withdrawn and replaced by 2005)                                                            |
| prEN2002-22          | Test methods for metallic materials - Part 22: Plane strain fracture toughness test        |

#### **General Comments**

#### Software

- The MTS TestSuite KIc Module supports ASTM E399. Specimen supported FFC(T), SE(B).
- The MTS TestSuite CTOD Module supports ASTM E1290. Specimen supported FFC(T), LLC(T), and SE(B).
- The MTS TestSuite JIc Module supports ASTM E1820. Specimen supported FFC(T), LLC(T) and SE(B).

#### **Room Temperature**

| Specimen                                   | Extensometer<br>Clip Gage (COD) | Grips            | Wedges                                | Alignment | Grip Supply                     |
|--------------------------------------------|---------------------------------|------------------|---------------------------------------|-----------|---------------------------------|
| C(T)<br>Compact Tension                    | 632.02<br>632.03                | 640 Clevis Grips | -                                     | -         | -                               |
| SE(B) Single Edge Bend Flat with vee notch | 632.02                          | 642<br>3-point   | Rollers                               | -         | -                               |
| M(T)<br>Middle Tension<br>Center crack     | -                               | 647              | Extra wide flat<br>wedges<br>(Custom) | -         | Load frame<br>integrated or 685 |

8



#### **Notes**

Specimen dictates extensometer choice: Factors include gauge length, travel, and environmental concerns

| SE(B) | Potential space constraints with bend fixture, extensometer                |  |  |  |  |
|-------|----------------------------------------------------------------------------|--|--|--|--|
|       | Smallest combination - 642.10 and 632.02                                   |  |  |  |  |
|       | Roller sizes - point loading desirable                                     |  |  |  |  |
|       | ASTM E399 and E1820 requirements                                           |  |  |  |  |
|       | Roller as wide as the specimen                                             |  |  |  |  |
|       | Top roller = W/4; Bottom roller = W/2 to W (where W is specimen thickness) |  |  |  |  |
|       | 642.001 includes rollers                                                   |  |  |  |  |
| M(T)  | This specimen type often requires custom fixtures (bolt to the specimen)   |  |  |  |  |
|       | Consult AE                                                                 |  |  |  |  |

#### High Temperature (500 to 1000°C)

#### **General Comments**

- High Temperature Fracture Mechanics is a complex application, requiring a custom solution; an AE must be involved for system configuration
- Use clip-on displacement gage Model 632.65 (high temperature with quartz rods)

### **Fatigue Crack Growth Test**

#### **Applicable Standards**

| ASTM E647-08        | Standard Test Method for Measurement of Fatigue Crack Growth Rates.                       |
|---------------------|-------------------------------------------------------------------------------------------|
| ISO 12108:2002      | Metallic materials - Fatigue testing - Fatigue crack growth method                        |
| prEN 3873           | Aerospace series - Test methods for metallic materials - Determination of fatigue crack   |
|                     | growth rates using corner-cracked (CC) test pieces (01/705746 DC:2001-03-21)              |
| BS 6835-1:1998      | Method for the determination of the rate of fatigue crack growth in metallic materials.   |
|                     | Fatigue crack growth rates of above 10-8 m per cycle (Replaced by BS ISO 12108:2002)      |
| DIN EN 4524:1999-06 | Aerospace series - Metallic materials - Test methods; measurement of fatigue crack growth |
|                     | rates                                                                                     |

#### **General Comments**

#### Software

- The MTS TestSuite Clip Gage Fatigue Crack Crowth Module supports ASTM E647. Method of measurement is via clip gage. Specimens supported FFC(T), SE(B) and M(T).
- The MTS TestSuite Crack Gage Fatigue Crack Crowth Module supports ASTM E647. Method of measurement is via crack gage. Specimen supported FFC(T).
- The MTS TestSuite Direct Current Potential Drop (DCPD) Fatigue Crack Crowth Module supports ASTM E647. Method of measurement is via DCPD. Specimen supported FFC(T).

#### **Room Temperature**

| Specimen                                   | Extensometer<br>Clip Gage (COD) | Grips            | Wedges                                | Alignment | Grip Supply                     |
|--------------------------------------------|---------------------------------|------------------|---------------------------------------|-----------|---------------------------------|
| C(T)<br>Compact Tension                    | 632.02<br>632.03                | 640 Clevis Grips | -                                     | -         | -                               |
| SE(B) Single Edge Bend Flat with vee notch | 632.02                          | 642<br>3-point   | Rollers                               | -         | -                               |
| M(T)<br>Middle Tension<br>Center crack     | Need two ext and average        | 647              | Extra wide flat<br>wedges<br>(Custom) | -         | Load frame<br>integrated or 685 |

#### **Notes**

• Specimen dictates extensometer choice: Factors include gauge length, travel, and environmental concerns

| SE(B) | Potential space constraints with bend fixture, extensometer                |  |  |  |  |  |  |
|-------|----------------------------------------------------------------------------|--|--|--|--|--|--|
|       | Smallest combination - 642.10 and 632.02                                   |  |  |  |  |  |  |
|       | Roller sizes - point loading desirable                                     |  |  |  |  |  |  |
|       | ASTM E399 and E1820 requirements                                           |  |  |  |  |  |  |
|       | Roller as wide as the specimen                                             |  |  |  |  |  |  |
|       | Top roller = W/4; Bottom roller = W/2 to W (where W is specimen thickness) |  |  |  |  |  |  |
|       | 642.001 includes rollers                                                   |  |  |  |  |  |  |
| M(T)  | This specimen type often requires custom fixtures (bolt to the specimen)   |  |  |  |  |  |  |
|       | Consult AE                                                                 |  |  |  |  |  |  |

10



#### High Temperature (500 to 1000°C)

#### **General Comments**

- High Temperature Fracture Mechanics is a complex application, requiring a custom solution; an AE must be involved for system configuration
- Use clip-on displacement gage Model 632.65 (high temperature with quartz rods)

#### **Direct Current Potential Drop (DCPD)**

#### **General Comments**

- High frequency (above 60 Hz), for both low and high temperatures
- Two channels per specimen (with reference standard) = default
- Documentation to guide specifications with DCPD will be available in the future
- MTS has an offering for DCPD, but it is not CE compliant
- If you have an application that requires DCPD, please contact an MTS Application Engineer

#### Software

• MTS TestSuite software will support DCPD (Direct Current Potential Drop).

### **Tensile Test**

#### **Applicable Standards**

| ACTRA FO/FORA OO     | Chandand Task Marks als for Tanaisa Tasking of Marks III. Marks vists                    |
|----------------------|------------------------------------------------------------------------------------------|
| ASTM E8/E8M-08       | Standard Test Methods for Tension Testing of Metallic Materials                          |
| ASTM E21-05          | Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials       |
| ASTM E517-00(2006)e1 | Standard Test Method for Plastic Strain Ratio r for Sheet Metal                          |
| ASTM E646-07         | Standard Test Method for Tensile Strain-Hardening Exponents (n-Values) of Metallic Sheet |
|                      | Materials                                                                                |
| ASTM B557-06         | Standard Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-      |
|                      | Alloy Products                                                                           |
| ASTM A370-09         | Standard Test Methods and Definitions for Mechanical Testing of Steel Products           |
| ISO 6892:1998        | Metallic materials - Tensile testing at ambient temperature                              |
| BS EN 10002-1:2001   | Tensile testing of metallic materials. Method of test at ambient temperature             |
| AS 1391-2007         | Metallic materials - Tensile testing at ambient temperature                              |
| prEN 2002-1          | Aerospace series Metallic materials Test methods Part 1: Tensile testing at ambient      |
|                      | temperature                                                                              |
| prEN 2002-2          | Aerospace series Metallic materials Test methods Part 1: Tensile testing at elevated     |
|                      | temperature                                                                              |

#### **General Comments**

100 - 300 kN load frame generally adequate

#### Software

- TestWorks software provides specific templates for tensile testing.
- MTS TestSuite MP or MPT may be suitable depending on specific types of test to be run. Contact AE.

#### **Room Temperature**

| Specimen | Extensometer<br>Clip Gage (COD)      | Grips                 | Wedges | Alignment | Grip Supply                        |
|----------|--------------------------------------|-----------------------|--------|-----------|------------------------------------|
|          |                                      | Advantage wedge grips | Vee    |           | -                                  |
| Round    | 632.13/.24<br>634.11/.12/.25/.28/.31 | 647                   | Vee    | Nana      | Load frame<br>integrated or<br>685 |
|          |                                      | Advantage wedge grips | Flat   | None      | -                                  |
| Flat     |                                      | 647                   | Flat   |           | Load frame<br>integrated or<br>685 |

- Advantage wedge grips are the most cost-effective option for tensile-only testing
- 647 grips are more flexible enable fatigue testing



### **High Temperature**

|          |                                          |                 |          |                         |                   |             |           | Grip       |
|----------|------------------------------------------|-----------------|----------|-------------------------|-------------------|-------------|-----------|------------|
| Specimen | Extensometer                             | Grips           | Wedges   | Misc                    | Temp              | Environment | Alignment | Supply     |
|          |                                          | Advantage       |          |                         | -130°C to         |             |           |            |
|          |                                          | wedge           | Vee      | _                       | +315°C            | 651         |           | _          |
|          |                                          | _               | VCC      | _                       | (-200°F to        |             |           | -          |
|          |                                          | grips           |          |                         | 600°F)            |             |           |            |
|          |                                          |                 |          |                         | -40°C to          |             | 1         |            |
|          |                                          | 647             |          |                         | 177°C             |             |           | 685 Stand  |
|          |                                          | .02/.10         | Vee      | -                       | (-40°F to         | 651         |           | alone      |
|          |                                          |                 |          |                         | 350°F)            |             |           |            |
|          |                                          |                 |          |                         | -40°C to          |             |           |            |
|          |                                          |                 |          |                         | 177°C             |             |           | 685 Stand  |
|          |                                          | 647.25          | Vee      | -                       | (-40°F to         | 651.06E-04  |           | alone      |
|          |                                          |                 |          |                         | •                 |             |           | alone      |
| Round    |                                          |                 |          |                         | 350°F)            |             | -         |            |
|          |                                          |                 |          |                         | -130°C to         |             |           | Load       |
|          |                                          | 647             | Vee      | -                       | 315°C             | 651         |           | frame      |
|          |                                          | All Temp        |          |                         | (-200°F to        |             |           | integrated |
|          |                                          |                 |          |                         | 600°F)            |             |           | or 685     |
|          |                                          | 647<br>All Temp |          |                         | -130°C to         |             |           | Load       |
|          |                                          |                 | Vee      | -                       | 540°C             | 651 105 04  |           | frame      |
|          | 632.13/.24<br>634.11/.12/.2<br>5/.28/.31 |                 |          |                         | (-200°F to        | 651.10E-04  | - None -  | integrated |
|          |                                          |                 |          |                         | 1000°F)           |             |           | or 685     |
|          |                                          | 24              | Vee H2O  | Water<br>Cooling<br>Kit |                   | 653         |           | Load       |
|          |                                          |                 |          |                         | 1400°C            |             |           | frame      |
|          |                                          |                 |          |                         | 2550°F            |             |           | integrate  |
|          |                                          |                 |          |                         |                   |             |           | or 685     |
|          |                                          |                 | Flat     | -                       | -130°C to         | 651         |           | 01 003     |
|          |                                          | Advantage       |          |                         | 315°C             |             |           |            |
|          |                                          | wedge           |          |                         | (-200°F to        |             |           | -          |
|          |                                          | grips           |          |                         | 600°F)            |             |           |            |
|          |                                          |                 |          |                         | -40°C to          |             |           |            |
|          |                                          | 647             | Flat     | -                       | -40 C to<br>177°C | 651         |           | COE Ctama  |
|          |                                          | 647             |          |                         |                   |             |           | 685 Stand  |
|          |                                          | .02/.10         |          |                         | (-40°F to         |             |           | alone      |
|          |                                          |                 |          |                         | 350°F)            |             |           |            |
|          |                                          |                 |          |                         | -40°C to          |             |           |            |
|          |                                          | 647.25          | Vee      | _                       | 177°C             | 651.06E-04  |           | 685 Stand  |
|          |                                          | 047.23          | VCC      |                         | (-40°F to         | 031.002 04  |           | alone      |
| Flat     |                                          |                 |          |                         | 350°F)            |             |           |            |
| Flat     |                                          |                 |          |                         | -130°C to         |             |           | Load       |
|          |                                          | 647             | FILE     |                         | 315°C             | 651         |           | frame      |
|          |                                          | All Temp        | Flat     | -                       | (-200°F to        | 651         |           | integrated |
|          |                                          |                 |          |                         | 600°F)            |             |           | or 685     |
|          |                                          |                 | 1        |                         | -130°C to         |             | 1         | Load       |
|          |                                          | 647             |          |                         | 540°C             |             |           | frame      |
|          |                                          | All Temp        | Flat     | -                       | (-200°F to        | 651.10E-04  |           | integrated |
|          |                                          | All Tellip      |          |                         | 1000°F)           |             |           | or 685     |
|          |                                          |                 |          | -                       | 1000 F)           |             | 1         |            |
|          |                                          |                 |          | Water                   | 440000            | 653         |           | Load       |
|          |                                          | 647             | Flat H2O | Cooling                 | 1400°C            | 653         |           | frame      |
|          |                                          |                 |          | Kit                     | 2550°F            |             |           | integrated |
|          |                                          |                 | ĺ        |                         |                   |             |           | or 685     |



- Specimen dictates extensometer choice. Factors include gauge length, travel, environmental concerns
- Advantage wedge grips are the most cost-effective option for tensile-only testing
- 647 grips are more flexible enable fatigue testing, higher temperatures
- Temperature rating of 647.02/.10/.25 limited by the grip, not the chamber
- Furnace selection should include consideration of acceptable specimen heating and thermal gradients at the system level



### **Compression Test**

#### **Applicable Standards**

| ASTM E9-89a(2000) | Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature      |
|-------------------|---------------------------------------------------------------------------------------------|
| ASTM E209-00      | Standard Practice for Compression Tests of Metallic Materials at Elevated Temperatures with |
|                   | Conventional or Rapid Heating Rates and Strain Rates                                        |

#### **General Comments**

#### Software

- TestWorks software provides specific templates for compression testing.
- MTS TestSuite MP or MPT may be suitable depending on specific types of test to be run. Contact AE.

#### **Room Temperature**

| Specimen | Extensometer<br>Clip Gage (COD) | Grips               | Alignment | Grip Supply |
|----------|---------------------------------|---------------------|-----------|-------------|
|          |                                 | 643 Compression     |           |             |
| -        | -                               | Platen              |           |             |
|          |                                 | (Spherical / Fixed) | -         | -           |
|          |                                 | 643 Compression     |           |             |
| -        | -                               | Platen (Fixed)      |           |             |

#### **Notes**

- Extensometer not generally used; potential to crush; mechanical stops recommended; contact AE for extensometer
- If there is a side loading concern, use spherical (not fixed) compression platens
- 643 compression platen size dictated by specimen, not force capacity

#### **High Temperature**

| Specimen | Extensometer<br>Clip Gage (COD) | Grips                                      | Temperature                       | Environment | Alignment | Grip Supply |
|----------|---------------------------------|--------------------------------------------|-----------------------------------|-------------|-----------|-------------|
| -        | -                               | 643 Compression Platen (Spherical / Fixed) | -130°C to<br>+175°C<br>(-200°F to | 651         | -         | -           |
| -        | -                               | 643<br>Compression<br>Platen (Fixed)       | 350°F)                            |             |           |             |

- Extensometer not generally used; potential to crush; mechanical stops recommended; contact AE for extensometer
- Temperature rating above limited by the compression platens, not the 651 chamber
- For temperatures above 350°F, contact AE



#### **Bend Test**

#### **Applicable Standards**

| ASTM E290              | Standard Test Methods for Bend Testing of Materials for Ductility                        |  |  |  |  |  |
|------------------------|------------------------------------------------------------------------------------------|--|--|--|--|--|
| ASTM C1211-02(2008)    | Standard Test Method for Flexural Strength of Advanced Ceramics at Elevated Temperatures |  |  |  |  |  |
| ASTM C1161-02c(2008)e1 | Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature   |  |  |  |  |  |
| JIS R 1604             | Testing method for flexural strength (modulus of rupture) of fine ceramics at elevated   |  |  |  |  |  |
|                        | temperature                                                                              |  |  |  |  |  |
| JIS R 1601             | Testing method for flexural strength (modulus of rupture) of fine ceramics at room       |  |  |  |  |  |
|                        | temperature                                                                              |  |  |  |  |  |

#### **General Comments**

• Contact an AE if you have a high temperature bend application

#### Software

- TestWorks software provides specific templates for tensile testing.
- MTS TestSuite MP or MPT may be suitable depending on specific types of test to be run. Contact AE.

#### **Room Temperature**

| Sp | ecimen | Extensometer<br>Clip Gage (COD) | Grips          | Wedges  | Alignment | Grip Supply |
|----|--------|---------------------------------|----------------|---------|-----------|-------------|
|    | -      | 632.06H                         | 642<br>3-point | Rollers | -         | -           |

#### Notes

- Potential space constraints with bend fixture, extensometer; 632.06H can be used with 642.01, 642.10 or 642.25; Mod available for the 642.01 and 642.10 mounting / ext
- Roller diameter is based on the specimen thickness
- 642.001 includes rollers

#### **High Temperature**

| Specimen                        | Extensometer<br>Clip Gage<br>(COD) | Grips  | Wedges  | Temperature | Environment | Alignment | Grip Supply |
|---------------------------------|------------------------------------|--------|---------|-------------|-------------|-----------|-------------|
| 50 mm long<br>3 - 4 mm<br>thick | -                                  | 642.85 | Rollers | -           | 653.03/.04  | -         | -           |
| -                               | -                                  | 642.05 | Rollers | -           |             | -         | -           |

16